If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+2y-6=0
a = 2; b = 2; c = -6;
Δ = b2-4ac
Δ = 22-4·2·(-6)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{13}}{2*2}=\frac{-2-2\sqrt{13}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{13}}{2*2}=\frac{-2+2\sqrt{13}}{4} $
| z/4+6=2 | | Y-4=x^2-4x | | 1.6x+8=−26.2 | | -7v-22=9(v-6) | | x/4+20=39 | | s-83/2=6 | | c/4-5=1 | | 9y+1/3=-10 | | 5(v+8)=2v+28 | | 5(f+4)=70 | | 3z+2z=16 | | 200=78+z | | 8y-23=-3(y+4) | | (3-3)(2/3x-6)=0 | | 17x+20=26 | | –5u=–6u−7 | | 54+24=e+68 | | 2/3=13;n= | | x+6=-(x+2) | | –10p−7=–9p | | Y-1=2x^2 | | 2/3x-6=0` | | d+26=40+2 | | q/4+11=12 | | 450+15x=400+25x | | 5.8v-3v= | | x/10+12=25 | | 19+16=24+c | | 5.8v3v= | | x/13+20=45 | | 4x^2+8x=77 | | 6(4-x)+14=38-6x |